Optimal Structures for Voltage Controllers in Inverters

Brian Johnson, Srinivasa Salapaka, Blake Lundstrom, and Murti Salapaka

Abstract—Output voltage regulation is a primary performance objective in power electronics systems which are not supported by a stiff voltage source. In this paper, we pose an optimal voltage control problem for ac inverter systems and study the structure of the resulting feedback laws. Here, it is demonstrated that the solution to the optimal voltage regulation control problem exhibits an inner current-controller structure even though there are no explicit objectives on tracking current which are targeted. Furthermore, the outer-loop voltage control and inner-loop current control structure is insensitive to the weighting transfer functions used in the optimal control problem. Although the inner-outter structure has been used in prior works, the optimal nature of such a structure was not known. In deriving the optimal controller, we also present a systematic design framework which is cognizant of the physical properties of inverters. Case studies are used to study the optimal controller and its performance.

I. INTRODUCTION

Voltage controllers form an integral component of microgrid systems, uninterruptible power supplies, dc-dc converters, and systems which are not supported by a stiff voltage source or grid. In so-called master-slave systems, the system voltage is supported by a single “master” power converter which typically acts on a fixed voltage reference and all remaining units regulate their currents [1]. In parallel converter systems, a centralized controller can be configured such that the voltage across a common load tracks a single reference [2], [3]. For decentralized implementations, droop-controlled inverters [4], [5] and dc-dc converters [6] each utilize an independent and variable voltage reference which depends on the output of each unit. Irrespective of how the voltage reference is generated, a voltage controller is needed to modulate the power electronics such that the output voltage tracks the reference. In this paper, we study the optimal structure of voltage controllers for ac inverter systems. In deriving the controller, we present a systematic design framework for designing multivariable voltage controllers with robust and optimal performance. The design framework provides a systematic means of targeting performance specifications that arise in typical ac power systems. As our main result, we show that the resulting optimal controller has an outer voltage controller and an inner current controller embedded in it. This result confirms that the inner-outter structure is optimal and substantiates the longstanding observation in conventional designs that inner-outter structures have superior performance [7]–[9].

Problems related to robust and optimal design of inverter controllers have received recent attention. In [10], [11], inverter controller parameters are obtained after solving a servomechanism robust optimization problem. The \mathcal{H}_∞ framework and internal model principle were recently applied with the objective of rejecting periodic disturbances in microgrids [12], [13]. Along similar lines, optimal controllers for static VAR compensators have been investigated [14]. Here, our focus is on studying the structure of the optimal controller itself and outlining an unambiguous design procedure.

The outer-voltage inner-current control structure has a rich history in the power community and has been utilized extensively in single- and three-phase [8], [15] inverters as well as dc-dc converters [7], [9]. Going back several decades, some of the earliest uses of the inner-outter control structure are found in dc-dc converter applications [16] and was first employed due to its superior performance in comparison to single-loop controllers. Subsequent analysis and engineering judgment have indicated an inherent robustness to load variations and its application has become well-established in inverters for ac systems [8]. Despite its advantages over single-loop controllers, traditional inner-outter design methods are iterative in nature, are not tailored for multiple input systems, and do not offer performance guarantees. In contrast, the proposed method is well-suited for multivariable settings and guarantees optimality.

The main contributions of this paper are as follows: i) we demonstrate that the optimal voltage controller has an inner-outter structure, and ii) in deriving the optimal controller, we describe a systematic design process which incorporates practical performance specifications in ac inverter systems.

The manuscript is organized in the following manner. In Section II we introduce the reader to the inverter system model, formulate the design problem, derive the plant model, and outline practical considerations for ac power electronics systems. The classical inner-outter structure is introduced and its correspondence with the optimal \mathcal{H}_∞ is established in Section III. Concluding statements are in Section IV.
II. SYSTEM MODEL, PROBLEM FORMULATION, AND CONTROL DESIGN

A. Inverter System Description

Consider the system in Fig. 1 which consists of a power electronics inverter connected across an impedance load, z_L. The inverter draws power from a dc source and generates a switched ac voltage, v_{inv}, which serves as a control variable. Using pulse width modulation (PWM) techniques and a high switching frequency, the switch cycle average of v_{inv} follows the command v_{inv} [8]. The inductance, L, and capacitance, C, filter high-frequency harmonics generated by the switching action. R accounts for ohmic losses in the inductor and r is the branch resistance which interfaces the inverter terminals to the remaining system. i_d encapsulates the behavior of unknown loads and sources in the system and is treated as a disturbance. Since the switching period is typically much smaller than the filter time-constants, we model the switch terminals as a controllable voltage source which follows the control signal v_{inv}. This averaged model facilitates design, modeling, and analysis.

We assume that the measured signals include the inductor current i_{inv}, capacitor voltage v, and output branch current i. The objective is to design a feedback law that generates a voltage command, v_{inv}, which ensures, i) v tracks v^*, ii) control performance is robust to parametric uncertainty, iii) the recovery time after disturbances and transients is small, and iv) the control signal, v_{inv}, respects bandwidth limitations.

H_∞ methods provide a framework for addressing multiple objectives such as those in the previous paragraph. With this approach, a linear stabilizing control law is obtained by posing and solving an optimization problem. In the remainder of the paper, we apply the H_∞ framework to derive a controller $K(s)$ and subsequently show that the optimal design exhibits an inner-outer structure.

B. Problem Formalization

We denote i) the external input as $w(s)^1$ where $w(s) = i_d(s)$ for the system in Fig. 1, ii) the control input as $u(s) = v_{inv}(s) - v(s)$ for the single inverter system, iii) the regulated output as $z(s)$ and we pick $z(s) = [W_1(s)(v^*(s) - v(s)), W_2(s)v_{inv}(s)]^T$ where $W_1(s)$ and $W_2(s)$ are user-defined weighting transfer functions, and iv) the measured output as $y(s)$ where $y(s) = [v^*(s) - v(s), i(s), i_{inv}(s)]^T$ for the inverter circuit. The physical configuration for this system is shown in Fig. 1.

The inductor current is given by

$$i_{inv}(s) = Y_{inv}(s)(v_{inv}(s) - v(s)),$$

where $Y_{inv}(s) := (sL + R)^{-1}$. The load voltage can be expressed as

$$v_L(s) = \left(\eta(s)i_{inv}(s) + \hat{i}_d(s)\right)Y_{rLC}^{-1}(s),$$

where we define

$$\eta(s) := \frac{z_C(s)}{z_{CL}(s) + r},$$

$$Y_{CL}(s) := Y_C(s)\eta(s) + Y_L(s),$$

and $Y_C(s) := z_{CL}^{-1}(s) = sC$. Along similar lines, the capacitor voltage can be written as

$$v(s) = (r_i inv(s) + v_L(s))\eta(s).$$

Lastly, the capacitor state-equation can be rearranged to yield

$$i(s) = i_{inv}(s) - Y_C(s)v(s).$$

Using (1)–(6), recalling $u(s) = v_{inv}(s) - v(s)$ and $z(s) = [W_1(s)(v^*(s) - v(s)), W_2(s)v_{inv}(s)]^T$, the block-diagram of the inverter circuit with the regulated variables is given in Fig. 2. Note that the transfer function, $W_d(s)$ is a user-defined transfer function which defines the expected frequency range of disturbances.

\[1\]From here forward, $s = \sigma + j\omega$ is a complex variable and proper transfer functions are assumed throughout.
The mapping from inputs \(w(s) \) and \(u(s) \) to outputs \(z(s) \) and \(y(s) \) is given as:

\[
\begin{bmatrix}
W_1(s)(v^*(s) - v(s)) \\
W_2(s)\epsilon_{\text{inv}}(s) \\
\epsilon(s) \\
i_{\text{in}}(s)
\end{bmatrix}
= G(s)
\begin{bmatrix}
W_1(s)(v^*(s) - v(s)) \\
W_2(s)\epsilon_{\text{inv}}(s) \\
\epsilon(s) \\
i_{\text{in}}(s)
\end{bmatrix},
\]

where the generalized plant transfer matrix is

\[
\begin{bmatrix}
\frac{W_1(s)W_2(s)}{Y_{RLC}(s)} \eta(s) \\
\frac{W_2(s)\eta(s)}{Y_{RLC}(s)} Y_{V_L}(s) (1+\gamma Y_{L}(s)) Y_{\text{inv}}(s) \\
\frac{-\eta(s) Y_{L}(s)}{Y_{RLC}(s)} Y_{V_L}(s) \\
0
\end{bmatrix}
= G(s)
\]

The derivation of (8) is summarized in Appendix-A. Having obtained \(G(s) \), the controller \(K(s) \) can be found after specifying the user-defined transfer functions \(W_1(s) \), \(W_2(s) \), and \(W_4(s) \) and solving the \(H_\infty \) design problem.

Remark 1: Although the load is generally unknown and does not have static parameters, an estimate of the load admittance can be utilized in the plant model. Subsequently, we show robust performance to load variations.

C. Design of Weighting Transfer Functions

Here, we outline a set of guidelines for designing the cost transfer functions which encapsulate practical performance objectives and system properties.

1) **Voltage regulation function** \(W_1(s) \): Referring to the first row in (7), it is apparent that \(W_1(s) \) has a direct relationship on the voltage tracking error. Accordingly, \(W_1(s) \) is designed such that tracking error at the nominal ac frequency, \(\omega_0 \), is minimized. The resonant behavior of the inverter LC filter is damped by the controller, and performance within the inverter bandwidth is emphasized. Accordingly, \(W_1(s) \) can be ascribed the following general form:

\[
W_1(s) = \kappa_1 G_{\omega_0}(s) G_{\text{rlc}}(s) G_{\text{inv}}(s),
\]

where \(\kappa_1 \) is an overall gain factor, \(G_{\omega_0}(s) \) is tuned such that it has a large amplitude at \(\omega_0 \), \(G_{\text{rlc}}(s) \) damps out the resonant behavior of the \(RLC \) elements in the filter, and \(G_{\text{inv}}(s) \) emphasizes performance within the inverter bandwidth.\(^2\) \(G_{\omega_0}(s) \) can be written as the superposition of a band-pass and notch filter with the following expression

\[
G_{\omega_0}(s) = \frac{\kappa_N s^2 + 2\kappa_{BP} \omega_0 s + \kappa_{BP} \omega^2}{s^2 + 2\zeta \omega_0 s + \omega^2},
\]

where \(\kappa_N \) and \(\kappa_{BP} \) are the gains of the notch and bandpass components, respectively, and \(\zeta \) is the damping factor. Since we wish to emphasize performance at the rated frequency, \(\omega_o \), we must pick \(\kappa_{BP} < \kappa_N \). For variable frequency ac systems, it may be necessary to increase \(\zeta \) to broaden the frequency range where \(G_{\omega_0}(s) \) is large. This approach of emphasizing the controller response at the rated system frequency is similar to the widely used proportional-resonant controller for ac systems [20], [21].

Undesired inverter filter resonance can be mitigated by including a model of the filter within \(G_{\text{rlc}}(s) \). Referring to Fig. 1, denote the parallel impedance of the RL branch and capacitor as \(z_1(s) := (R + sL) || (sC)^{-1} \). We ascribe \(G_{\text{rlc}}(s) \) the following form:

\[
G_{\text{rlc}}(s) = (z_1(s) + 1) \frac{\text{den}(z_1(s))}{\alpha(s)}. \tag{11}
\]

In practice, the output filter is designed with minimal resistive losses such that high efficiency is maintained. Consequently, \(z_1(s) \) usually exhibits a tight peak at \(1/\sqrt{LC} \) and small gain at all other frequencies. To provide robustness to parameter variations (typical filter component tolerances are \(\pm 10\% \)) we wish to damp frequencies around \(1/\sqrt{LC} \) by tuning \(G_{\text{rlc}}(s) \). Towards that end, \(\text{den}(z_1(s))/\alpha(s) \) is selected to attain the desired response around \(1/\sqrt{LC} \) and the addition of 1 in the first factor of (11) flattens the gain to unity at asymptotically high and low frequencies.

Reference tracking at frequencies within the inverter bandwidth can be further enhanced by including the transfer function, \(G_{\text{bw}}(s) \). Specifically, to ensure \(W_1(s) \) does not emphasize high frequencies which cannot be realized by the hardware, \(G_{\text{bw}}(s) \) can be selected as a low-pass filter. Here, we pick

\[
G_{\text{bw}}(s) = (\omega_{pf}/(s + \omega_{pf}))^2. \tag{12}
\]

Lastly, the overall gain factor, \(\kappa_1 \), in (9) is proportional to the voltage regulation aggressiveness of the controller and can be tuned accordingly.

2) **Inverter voltage control effort weighting function** \(W_2(s) \): Referring to (7), it follows that \(W_2(s) \) corresponds to shaping the performance of \(\epsilon_{\text{inv}} \). Since there are no corresponding reference signals to track, \(W_2(s) \) can be designed to suppress high-frequency control effort. Accordingly, a high-pass filter or a related variation can be used as given below

\[
W_2(s) = W_3(s) = \frac{c_1 s + \omega_w}{s + c_2 \omega_w}, \tag{13}
\]

where \(c_1 \) and \(c_2^{-1} \) are the asymptotic gains at high frequencies and dc, respectively, and \(c_1 \omega_w \) and \(c_2^{-1} \) are the frequency breakpoints.

3) **Disturbance current transfer function** \(W_4(s) \): The function, \(W_4(s) \), characterizes the response of expected disturbances. For systems with linear loads, we can assume that disturbance currents have components primarily at \(\omega_0 \). However, if nonlinear disturbances, such as diode rectifier loads and switching power supplies, are anticipated, \(W_4(s) \) can be chosen to emphasize higher order harmonics. If the frequency content of unmodelled loads is anticipated, \(W_4(s) \) can be chosen accordingly. For instance, the harmonics of rectifier loads are well characterized in [18], [19]. Here, we choose this function as a low-pass filter (i.e., \(W_4(s) = \)}
This is the natural representation of the text content.
1, the controller, $K(s)$, is obtained after solving the H_{∞} design problem. As illustrated in Fig. 4, the voltage tracking weighting transfer function, $W_1(s)$, has peaks at $2\pi f_0 \text{rad/s}$ and $1/\sqrt{LC}$. The transfer function, $W_2(s)$, exhibits a high-pass characteristic. Having obtained the controller, we now study the responses of $K_{ui}(s)$ and $K_{ui\text{inv}}(s)$.

As shown in Figs. 5 and 6, the control response to both current measurements is similar in magnitude over a broad frequency range and they exhibit a 180° phase shift between each other. This result confirms $K_{ui}(s) \approx -K_{ui\text{inv}}(s)$ which implies the relationship in (15) and establishes a correspondence with the conventional inner-outer response in (14). This observation holds for parametric variations in the plant output filter and the controller gains. In particular, the L, C, and R filter values in Figs. 5 and 6 differ by a factor of 3 and the respective subplots utilize a weighting coefficient κ_1 that varies by a factor of 100. This provides strong evidence that $K_{ui}(s) \approx -K_{ui\text{inv}}(s)$ holds over a broad set of conditions. It is worth noting and especially interesting that the inner-current controller appears despite the exclusion of current as a regulated variable.

C. Time-Domain Performance

Here we analyze the time-domain performance of the system in Fig. 1 with the optimal controller. In the generalized plant matrix, a nominal parallel RL load is assumed which consumes 1 kW of real power with a power factor of 0.8. A sinusoidal voltage reference is utilized where $v^*(t) = 120\sqrt{}\sin(\omega_0 t)$.

We observe the case when a disturbance current, i_d, is injected into the load. Referring to Fig. 7, the inverter is initially delivering power to the nominal load. At $t = 0.1$ s, a sinusoidal disturbance current with amplitude 10 A and 120° phase shift is initiated. To illustrate how controller performance is easily adjusted by tuning the weighting transfer functions, we compare voltage regulation when the performance coefficient κ_1 in (9) is adjusted. In Figs. 7(a) and 7(b), κ_1 is assigned a value of 10^2 and 10^4, respectively. In comparing the response of the two systems, it is evident that the controller with the larger value of κ_1 yields a smaller voltage tracking error during both transients and in steady-state.

IV. Conclusion

Here, we studied the optimal structure of voltage controllers for inverters. It was shown that the optimal con-
controller, obtained via H_∞ synthesis, contains outer-voltage and inner-current control loops embedded in it. This result is obtained despite variations in the design parameters and the intentional exclusion of current design specifications. This suggests that the optimality of the inner-outer structure holds over a wide parameter space and is generally applicable. As part of future efforts, an analytical proof of the inner-outer structure is in progress.

APPENDIX

A. Computation of $G(s)$

$$v^*(s) - v(s)$$

is given by

$$v^*(s) - v(s) = v^*(s) - \left(\frac{\eta(s)}{Y_{\text{RLC}}(s)} \right) i_d(s)$$

$$- \left(\frac{\eta(s)(1 + rY_L(s)) Y_{\text{inv}}(s)}{Y_{\text{RLC}}(s)} \right) (v_{\text{inv}}(s) - v(s)), \quad (16)$$

where the final expression follows from

$$r + \eta(s)Y_{RLC}^{-1}(s) = Y_{RLC}^{-1}(s)(1 + rY_L(s)), \quad (17)$$

and $Y_L(s) := z_L^{-1}(s)$. (16) accounts for the first and third rows of $G(s)$ in (7).

The inverter voltage can be written in terms of $i_d(s)$ and $(v_{\text{inv}}(s) - v(s))$ as given below:

$$v_{\text{inv}}(s) = \frac{W_d(s)\eta(s)}{Y_{\text{RLC}}(s)} i_d(s) + \left(1 + \frac{\eta(s)(1 + rY_L(s)) Y_{\text{inv}}(s)}{Y_{\text{RLC}}(s)}\right) \left(v_{\text{inv}}(s) - v(s)\right), \quad (18)$$

The result in (18) corresponds to the second row of (7).

Along similar lines, the inverter output current can be expressed as

$$i(s) = - \left(\frac{W_d(s)\eta(s)Y_c(s)}{Y_{\text{RLC}}(s)} \right) i_d(s) + \left(\frac{\eta(s)Y_L(s) Y_{\text{inv}}(s)}{Y_{\text{RLC}}(s)} \right) (v_{\text{inv}}(s) - v(s)), \quad (19)$$

where we utilized the fact that

$$1 - rY_c(s)\eta(s) - \frac{\eta^2(s) Y_c(s)}{Y_{\text{RLC}}(s)}\eta(s)Y_L(s) = \frac{\eta(s)Y_L(s)}{Y_{\text{RLC}}(s)}. \quad (20)$$

The fourth row of $G(s)$ is characterized using (19) and the last row is given by (1).